Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 216
Filter
1.
Acta Physiologica Sinica ; (6): 401-410, 2022.
Article in Chinese | WPRIM | ID: wpr-939575

ABSTRACT

The purpose of this paper was to study the transcriptional regulation of nuclear respiratory factor 1 (NRF1) on nuclear factor kappa B (NF-κB), a key molecule in lipopolysaccharide (LPS)-induced lung epithelial inflammation, and to clarify the mechanism of NRF1-mediated inflammatory response in lung epithelial cells. In vivo, male BALB/c mice were treated with NRF1 siRNA, followed with LPS (4 mg/kg) or 0.9% saline through respiratory tract, and sacrificed 48 h later. Expression levels of NRF1, NF-κB p65 and its target genes were detected by Western blot and real-time PCR. Nuclear translocation of NRF1 or p65 was measured by immunofluorescent technique. In vitro, L132 cells were transfected with NRF1 siRNA or treated with BAY 11-7082 (5 μmol/L) for 24 h, followed with treatment of 1 mg/L LPS for 6 h. Cells were lysed for detections of NRF1, NF-κB p65 and its target genes as well as the binding sites of NRF1 on RELA (encoding NF-κB p65) promoter by chromatin immunoprecipitation assay (ChIP). Results showed that LPS stimulated NRF1 and NF-κB p65. Pro-inflammatory factors including interleukin-1β (IL-1β) and IL-6 were significantly increased both in vivo and in vitro. Obvious nuclear translocations of NRF1 and p65 were observed in LPS-stimulated lung tissue. Silencing NRF1 resulted in a decrease of p65 and its target genes both in vivo and in vitro. In addition, BAY 11-7082, an inhibitor of NF-κB, significantly repressed the inflammatory responses induced by LPS without affecting NRF1 expression. Furthermore, it was proved that NRF1 had three binding sites on RELA promoter region. In summary, NRF1 is involved in LPS-mediated acute lung injury through the transcriptional regulation on NF-κB p65.


Subject(s)
Animals , Male , Mice , Acute Lung Injury/genetics , Lipopolysaccharides/pharmacology , NF-kappa B/metabolism , Nuclear Respiratory Factor 1/genetics , RNA, Small Interfering , Transcription Factor RelA/metabolism
2.
Frontiers of Medicine ; (4): 750-766, 2021.
Article in English | WPRIM | ID: wpr-922505

ABSTRACT

Exposure to particulate matter 2.5 (PM2.5) potentially triggers airway inflammation by activating nuclear factor-κB (NF-κB). Sirtuin 2 (SIRT2) is a key modulator in inflammation. However, the function and specific mechanisms of SIRT2 in PM2.5-induced airway inflammation are largely understudied. Therefore, this work investigated the mechanisms of SIRT2 in regulating the phosphorylation and acetylation of p65 influenced by PM2.5-induced airway inflammation and bronchial hyperresponsiveness. Results revealed that PM2.5 exposure lowered the expression and activity of SIRT2 in bronchial tissues. Subsequently, SIRT2 impairment promoted the phosphorylation and acetylation of p65 and activated the NF-κB signaling pathway. The activation of p65 triggered airway inflammation, increment of mucus secretion by goblet cells, and acceleration of tracheal stenosis. Meanwhile, p65 phosphorylation and acetylation, airway inflammation, and bronchial hyperresponsiveness were deteriorated in SIRT2 knockout mice exposed to PM2.5. Triptolide (a specific p65 inhibitor) reversed p65 activation and ameliorated PM2.5-induced airway inflammation and bronchial hyperresponsiveness. Our findings provide novel insights into the molecular mechanisms underlying the toxicity of PM2.5 exposure. Triptolide inhibition of p65 phosphorylation and acetylation could be an effective therapeutic approach in averting PM2.5-induced airway inflammation and bronchial hyperresponsiveness.


Subject(s)
Animals , Mice , Inflammation , NF-kappa B/metabolism , Particulate Matter/toxicity , Signal Transduction , Sirtuin 2/metabolism , Transcription Factor RelA/metabolism
3.
China Journal of Chinese Materia Medica ; (24): 2566-2571, 2019.
Article in Chinese | WPRIM | ID: wpr-773225

ABSTRACT

This study was to investigate the mechanism of safflower yellow injection for regulating inflammatory response against myocardial ischemia-reperfusion injury( MIRI) in rats. Male Wistar rats were randomly divided into sham operation group,model group,Hebeishuang group,safflower yellow injection high,medium and low dose groups. MIRI model was established by ligating left anterior descending coronary artery. Myocardial histopathological changes were observed by HE staining; myocardial infarct size was detected by TTC staining; content and changes of tumor necrosis factor-α( TNF-α) and interleukin-6( IL-6),serum creatine kinase( CK),aspartate aminotransferase( AST),and lactate dehydrogenase( LDH) were detected by biochemical method or enzyme-linked immunosorbent assay( ELISA). Western blot assay was used to detect the protein expression of Toll-like receptor 4( TLR4) and nuclear factor-κB( NF-κB p65) in myocardial tissues. The results showed that as compared with the sham operation group,the myocardial arrangement of the model group was disordered,with severe edemain the interstitial,significantly increased area of myocardial infarction,increased activities of AST,CK and LDH in serum,and significantly increased contents of TNF-α and IL-6; the expression levels of TLR4 and NF-κB( p65) protein in myocardial tissues were also increased. As compared with the model group,the myocardial tissues were arranged neatlyin the Hebeishuang group and safflower yellow injection high,medium and low dose groups; the edema was significantly reduced; the myocardial infarct size was significantly reduced; the serum AST,CK,LDH activity and TNF-α,IL-6 levels were significantly decreased,and the expression levels of TLR4 and NF-κB( p65) protein in myocardial tissues were decreased. As compared with the Hebeishuang group,the myocardial infarct size was larger in the safflower yellow injection high,medium and low dose groups; the activities of AST,CK and LDH in serum and the contents of TNF-α and IL-6 in serum were higher,but there was no statistically significant difference in the expression levels of TLR4 and NF-κB( p65) protein in tissues. It is suggested that safflower yellow injection has a significant anti-MIRI effect,and its mechanism may be related to the regulation of TLR-NF-κB pathway to inhibit inflammatory response.


Subject(s)
Animals , Male , Rats , Anti-Inflammatory Agents , Pharmacology , Aspartate Aminotransferases , Blood , Chalcone , Pharmacology , Creatine Kinase , Blood , Interleukin-6 , Metabolism , L-Lactate Dehydrogenase , Blood , Myocardial Reperfusion Injury , Drug Therapy , Rats, Wistar , Toll-Like Receptor 4 , Metabolism , Transcription Factor RelA , Metabolism , Tumor Necrosis Factor-alpha , Metabolism
4.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 184-193, 2018.
Article in English | WPRIM | ID: wpr-812414

ABSTRACT

Salvianolic acid A (SAA) is a water-soluble component from the root of Salvia Miltiorrhiza Bge, a traditional Chinese medicine, which has been used for the treatment of cerebrovascular diseases for centuries. The present study aimed to determine the brain protective effects of SAA against cerebral ischemia reperfusion injury in rats, and to figure out whether SAA could protect the blood brain barrier (BBB) through matrix metallopeptidase 9 (MMP-9) inhibition. A focal cerebral ischemia reperfusion model was induced by middle cerebral artery occlusion (MCAO) for 1.5-h followed by 24-h reperfusion. SAA was administered intravenously at doses of 5, 10, and 20 mg·kg. SAA significantly reduced the infarct volumes and neurological deficit scores. Immunohistochemical analyses showed that SAA treatments could also improve the morphology of neurons in hippocampus CA1 and CA3 regions and increase the number of neurons. Western blotting analyses showed that SAA downregulated the levels of MMP-9 and upregulated the levels of tissue inhibitor of metalloproteinase 1 (TIMP-1) to attenuate BBB injury. SAA treatment significantly prevented MMP-9-induced degradation of ZO-1, claudin-5 and occludin proteins. SAA also prevented cerebral NF-κB p65 activation and reduced inflammation response. Our results suggested that SAA could be a promising agent to attenuate cerebral ischemia reperfusion injury through MMP-9 inhibition and anti-inflammation activities.


Subject(s)
Animals , Humans , Male , Rats , Anti-Inflammatory Agents , Blood-Brain Barrier , Allergy and Immunology , Brain , Brain Ischemia , Drug Therapy , Genetics , Caffeic Acids , Drugs, Chinese Herbal , Lactates , Matrix Metalloproteinase 9 , Genetics , Metabolism , Rats, Sprague-Dawley , Reperfusion Injury , Genetics , Allergy and Immunology , Salvia miltiorrhiza , Chemistry , Tissue Inhibitor of Metalloproteinase-1 , Genetics , Metabolism , Transcription Factor RelA , Genetics , Allergy and Immunology
5.
Chinese Journal of Applied Physiology ; (6): 102-105, 2018.
Article in Chinese | WPRIM | ID: wpr-773794

ABSTRACT

OBJECTIVES@#To investigate the role of autophagy inhibitor chloroquine (CQ) in acute ethanol-induced liver injury and its mechenism.@*METHODS@#Twenty-one C57BL/6 male mice were randomly divided into three groups:control group, ethanol group, CQ + ethanol group (=7). Mice in ethanol group were administered 33% (v/v) ethanol at a dose of 4.5 g/kg body weight. Ethanol-induced liver steatosis in each group was detected by hematoxylin and eosin staining. Hepatic lipid accumulation was detected by staining with Oil red O. Hepatic tissue triglyceride (TG) levels, serum aspartate aminotransferase(AST) and alanine aminotransferase(ALT) were determined by biochemical assays. Protein expression of microtubule-associated protein 1 light chain 3(LC3) and nuclear factorκB p65(NF-κB p65) were measured by Western blot and immunofluorescence. Pro-inflammatory factors tumor necrosis factor-α(TNF-α)、interleukin 6(IL-6) were detected by ELISA.@*RESULTS@#Compared with control group, ethanol induced liver injury proved by accumulation of hepatic lipids, TG levels, AST and ALT activities were significantly increased by ethanol, protein expression of LC3-Ⅱ was also markedly increased by ethanol. Compared with ethanol group, addition of CQ increased furtherthe level of LC3-Ⅱexpression, and TG amount, serum AST and ALT activities, and the expression of NF-κB p65, TNF-αand IL-6.@*CONCLUSIONS@#Acute ethanol-intake could induce liver steatosis and inflammation, and autophagy inhibitor CQ exacerbatedethanol-induced liver injury, suggested that autophagy might be protective effect in acute ethanol-induced liver disease.


Subject(s)
Animals , Male , Mice , Alanine Transaminase , Blood , Aspartate Aminotransferases , Blood , Autophagy , Chloroquine , Pharmacology , Interleukin-6 , Liver , Liver Diseases, Alcoholic , Drug Therapy , Mice, Inbred C57BL , Microtubule-Associated Proteins , Metabolism , Random Allocation , Transcription Factor RelA , Metabolism , Triglycerides , Tumor Necrosis Factor-alpha
6.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 184-193, 2018.
Article in English | WPRIM | ID: wpr-773624

ABSTRACT

Salvianolic acid A (SAA) is a water-soluble component from the root of Salvia Miltiorrhiza Bge, a traditional Chinese medicine, which has been used for the treatment of cerebrovascular diseases for centuries. The present study aimed to determine the brain protective effects of SAA against cerebral ischemia reperfusion injury in rats, and to figure out whether SAA could protect the blood brain barrier (BBB) through matrix metallopeptidase 9 (MMP-9) inhibition. A focal cerebral ischemia reperfusion model was induced by middle cerebral artery occlusion (MCAO) for 1.5-h followed by 24-h reperfusion. SAA was administered intravenously at doses of 5, 10, and 20 mg·kg. SAA significantly reduced the infarct volumes and neurological deficit scores. Immunohistochemical analyses showed that SAA treatments could also improve the morphology of neurons in hippocampus CA1 and CA3 regions and increase the number of neurons. Western blotting analyses showed that SAA downregulated the levels of MMP-9 and upregulated the levels of tissue inhibitor of metalloproteinase 1 (TIMP-1) to attenuate BBB injury. SAA treatment significantly prevented MMP-9-induced degradation of ZO-1, claudin-5 and occludin proteins. SAA also prevented cerebral NF-κB p65 activation and reduced inflammation response. Our results suggested that SAA could be a promising agent to attenuate cerebral ischemia reperfusion injury through MMP-9 inhibition and anti-inflammation activities.


Subject(s)
Animals , Humans , Male , Rats , Anti-Inflammatory Agents , Blood-Brain Barrier , Allergy and Immunology , Brain , Brain Ischemia , Drug Therapy , Genetics , Caffeic Acids , Drugs, Chinese Herbal , Lactates , Matrix Metalloproteinase 9 , Genetics , Metabolism , Rats, Sprague-Dawley , Reperfusion Injury , Genetics , Allergy and Immunology , Salvia miltiorrhiza , Chemistry , Tissue Inhibitor of Metalloproteinase-1 , Genetics , Metabolism , Transcription Factor RelA , Genetics , Allergy and Immunology
7.
China Journal of Chinese Materia Medica ; (24): 4295-4304, 2018.
Article in Chinese | WPRIM | ID: wpr-775344

ABSTRACT

To observe the effect of total triterpenoids of Chaenomeles speciosa on PPARγ/SIRT1/NF-κBp65 signaling pathway and intestinal mucosal barrier of ulcerative colitis induced by dextran sulfate sodium (DSS) in mice, C57BL/6 mice were randomly divided into normal group, model group, total triterpenoids of C. speciosa (50, 100 mg·kg⁻¹) groups and sulfasalazine (250 mg·kg⁻¹) group. The ulcerative colitis (UC) model was induced by orally administering 2.5% DSS to the experimental mice, and the corresponding drugs were given to each group 3 days before the administration with 2.5% DSS. The normal group and the model group were given the equal volume of 0.5% carboxymethyl cellulose sodium solution by gavage continuously for 10 days, q.d. The general conditions of the mice were observed on a daily basis, and the disease activity index (DAI) score was recorded. On the 10th day after the treatment, mice were put to death, the contents of TNF-α, IL-1β, IL-6, IFN-γ, IL-4 and IL-10 in the blood were detected, colon length was measured, colon mucosa damage index (CMDI) score was calculated, and MPO activity detection and histomorphology analysis were conducted. Real-time PCR was applied to detect the mRNA expressions of E-cadherin, occluding,MUC2 and TFF3; the protein expressions of SIRT1, IKKβ, p-IKKβ, IκBα, p-IκBα and cytosol and nucleus PPARγ, NF-κBp65 in intestinal tissue were detected by western blot. The results indicated that total triterpenoids of C. speciosa (50, 100 mg·kg⁻¹) could significantly improve the general conditions of UC mice, reduce the DAI, CMDI and histopathological scores, increase the colon length, reduce the colonic mucosa ulcers, erosion and inflammatory infiltration, restore the normal intestinal mucosal barrier function, reduce the contents of TNF-α, IL-1β, IL-6, IFN-γ, increase the contents of IL-4 and IL-10 in the blood, inhibit MPO activity in colon tissue, up-regulate the mRNA expressions of E-cadherin, occludin, MUC2 and TFF3 in colon tissue, down-regulate the protein expressions of cytosol PPARγ, tissue p-IKKβ, p-IκBα and nucleus NF-κBp65 in the colon tissue, decrease the p-IKKβ/IKKβ and p-IκBα/IκBα ratios, up-regulate the protein expressions of nucleus PPARγ, tissue SIRT1 and cytosol NF-κBp65 (<0.05 or <0.01, respectively), with a dose-effect relationship between the total triterpenoids of C. speciosa treated groups. These findings suggested that total triterpenoids of C. speciosa had a significantly therapeutic effect on UC mice induced by DSS, its mechanism might be related to the regulation of PPARγ/SIRT1/NF-κBp65 signaling pathway, the inhibition of pro-inflammatory factor formation and the up-regulation of protein expression of protective factors.


Subject(s)
Animals , Mice , Colitis, Ulcerative , Drug Therapy , Colon , Dextran Sulfate , Disease Models, Animal , Intestinal Mucosa , Mice, Inbred C57BL , PPAR gamma , Metabolism , Random Allocation , Rosaceae , Chemistry , Signal Transduction , Sirtuin 1 , Metabolism , Transcription Factor RelA , Metabolism
8.
Journal of Integrative Medicine ; (12): 199-207, 2018.
Article in English | WPRIM | ID: wpr-691072

ABSTRACT

<p><b>OBJECTIVE</b>Aging is associated with the development of diseases because of immunosuppression and altered functioning of the neuroendocrine system. The medicinal properties of Morinda citrifolia L. have been widely exploited for the treatment of age-associated diseases. This study aims to investigate the in vitro and in vivo effects of noni (M. citrifolia) fruit juice (NFJ) on neuro-immunomodulation in the lymph node lymphocytes of F344 rats.</p><p><b>METHODS</b>Lymphocytes isolated from axillary and inguinal lymph nodes of young (3-4 months) and old (18-21 months) rats were treated in vitro with different concentrations (0.0001%, 0.01%, and 1%) of NFJ for a period of 24 h. In the in vivo study, old (16-17 months) male F344 rats were treated with 5 mL/kg body weight of 5%, 10% and 20% of NFJ, twice a day, by oral gavage, and lymph node lymphocytes were isolated after 60 d. Concanavalin A (Con A)-induced lymphocyte proliferation, interleukin-2 (IL-2) and interferon-γ (IFN-γ) production and expression of intracellular markers, such as phospho-extracellular signal-regulated kinase (p-ERK1/2), phospho-cAMP response element-binding protein, phospho-protein kinase B (p-Akt), phospho-tyrosine hydroxylase (p-TH), phospho-nuclear factor of κ light polypeptide gene enhancer in B-cells inhibitor-α (p-IκB-α) and phospho-nuclear factor-κB (p-NF-κB p65 and p50) were examined in the lymphocytes of lymph nodes.</p><p><b>RESULTS</b>NFJ increased Con A-induced lymphocyte proliferation, IL-2 and IFN-γ production, and p-ERK1/2 expression both in vitro and in vivo. In in vivo NFJ-treated old rats, lymph node lymphocytes showed increased expression of p-TH and Akt, nitric oxide production and decreased expression of p-NF-κB p65 and p50.</p><p><b>CONCLUSION</b>These results suggest that the immunostimulatory properties of NFJ are facilitated through intracellular signaling pathways involving ERK1/2, Akt and NF-κB.</p>


Subject(s)
Animals , Humans , Male , Rats , Adjuvants, Immunologic , Metabolism , Aging , Allergy and Immunology , Metabolism , Cell Proliferation , Fruit , Chemistry , Metabolism , Fruit and Vegetable Juices , Interleukin-2 , Allergy and Immunology , Lymph Nodes , Cell Biology , Allergy and Immunology , Lymphocytes , Cell Biology , Allergy and Immunology , Morinda , Chemistry , Metabolism , NF-kappa B , Allergy and Immunology , Plant Preparations , Metabolism , Rats, Inbred F344 , Transcription Factor RelA , Allergy and Immunology
9.
Chinese Acupuncture & Moxibustion ; (12): 5133-5138, 2018.
Article in Chinese | WPRIM | ID: wpr-690792

ABSTRACT

<p><b>OBJECTIVE</b>To observe the effects of electroacupuncture (EA) on inflammatory reaction of acute myocardial ischemia (MI) in mice, and to explore its action mechanism.</p><p><b>METHODS</b>Forty adult male C57BL/6 mice were randomly divided into a control group, a sham operation group, a model group and an EA group, 10 mice in each one. The model was established in the model group and EA group by ligating the left anterior descending branch of coronary artery. The mice in the EA group were treated with EA at "Neiguan" (PC 6) with 2 mA of intensity and 2 Hz /100 Hz of frequency; EA was given 30 min per treatment, once a day for totally 5 days. The mice in the control group and model group were treated with immobilization and no EA was given. The mice in the sham operation group were not treated with ligating at the left anterior descending branch of coronary artery, but the remaining procedure was identical to the model group. The electrocardiogram was recorded and △ST was calculated to evaluate the model. TTC and HE staining methods were applied to evaluate the infarct size and pathologic change of myocardial tissue, respectively. Western blot method was applied to test the protein expression levels of tumor necrosis factor-α (TNF-α), nuclear factor-κB p65 (NF-κB p65), interleukin-1β (IL-1β) and interleukin-8 (IL-8).</p><p><b>RESULTS</b>Compared with the sham operation group, the S-T segments in the model group and EA group were increased obviously after modeling (both <0.01), indicating the MI model was established successfully. The TTC and HE staining results indicated, compared with the sham operation group, the model group had larger infarction size (<0.01), more myocardial fibers injury and inflammatory infiltration; compared with the model group, the infarction size of the EA group was significantly reduced (<0.01), and the myocardial fibers injury and inflammatory infiltration were improved. Compared with the control group, the protein expression levels in the sham operation group were similar (all >0.05); compared with the sham operation group, the expression levels of TNF-α, NF-κB p65, IL-1β and IL-8 were significantly increased in the model group (<0.01, <0.05); compared with the model group, the expression levels of TNF-α, NF-κB p65, IL-1β and IL-8 were significantly reduced in the EA group (all <0.05).</p><p><b>CONCLUSION</b>EA might reduce the protein expression levels of TNF-α, NF-κB p65, IL-1β and IL-8 in cardiac muscle tissue to inhibit inflammatory reaction and achieve myocardial protective effect in mice with acute myocardial ischemia.</p>


Subject(s)
Animals , Male , Mice , Electroacupuncture , Inflammation , Therapeutics , Interleukin-1beta , Metabolism , Interleukin-8 , Metabolism , Mice, Inbred C57BL , Myocardial Ischemia , Therapeutics , Myocardium , Pathology , Random Allocation , Transcription Factor RelA , Metabolism , Tumor Necrosis Factor-alpha , Metabolism
10.
National Journal of Andrology ; (12): 199-205, 2018.
Article in Chinese | WPRIM | ID: wpr-689777

ABSTRACT

<p><b>Objective</b>To explore the inhibitory effect of polyphyllin Ⅰ (PPⅠ) on the proliferation of castration-resistant prostate cancer PC3 cells and its molecular mechanism.</p><p><b>METHODS</b>We cultured human prostate cancer PC3 cells in vitro and treated them with PPⅠ at the concentrations of 0 (blank group), 0.4, 0.8, 1.2, 1.6, 2.0, and 2.4 μmol/L for 24, 48, and 72 hours, respectively. Then we detected the proliferation of the cells by MTT assay, measured their apoptosis by flow cytometry, and determined the expressions of p-ERK1/2, ERK1/2, NF-κB/p65 and DNMT1 proteins as well as the level of NF-κB/p65 in the cells additionally treated with the ERK1/2 inhibitor SP600125 by Western blot.</p><p><b>RESULTS</b>Compared with the blank control group, the PPⅠ-treated PC3 cells showed a concentration- and time-dependent reduction of the survival rate (1.00 ± 0.00 vs 0.85 ± 0.05, P < 0.01) at 0.4 μmol/L after 48 hours of intervention, concentration-dependent early apoptosis at 0.8 μmol/L (4.83 ± 0.95 vs 13.83 ± 2.97, P < 0.01), time-dependent increase of the expressions of p-ERK1/2 (1.00 ± 0.00 vs 1.73 ± 0.17, P < 0.01) and ERK1/2 (1.00 ± 0.00 vs 1.36 ± 0.12, P < 0.01) at 2 hours, and concentration-dependent decrease of the expressions of NF-κB/p65 and DNMT1 at 1.2 μmol/L (1.00 ± 0.00 vs 0.78 ± 0.10 and 0.63 ± 0.06, P < 0.01) and 1.6 μmol/L (1.00 ± 0.00 vs 0.67 ± 0.11 and 0.52 ± 0.09, P<0.01). Inhibition of ERK1/2 phosphorylation with PD98059 markedly reversed PPⅠ-induced decrease of the NF-κB/p65 expression as compared with that in the PPⅠ group (0.86 ± 0.18 vs 0.43 ± 0.09, P < 0.05).</p><p><b>CONCLUSIONS</b>PPⅠ induces the early apoptosis and suppresses the proliferation of PC3 cells, probably by activating the ERK1/2 pathway and inhibiting the expressions of the NF-κB/p65 and DNMT1 proteins.</p>


Subject(s)
Humans , Male , Apoptosis , Cell Proliferation , DNA (Cytosine-5-)-Methyltransferase 1 , Metabolism , Diosgenin , Pharmacology , Flavonoids , Metabolism , MAP Kinase Signaling System , Mitogen-Activated Protein Kinase 1 , Metabolism , Mitogen-Activated Protein Kinase 3 , Metabolism , NF-kappa B , Metabolism , PC-3 Cells , Phosphorylation , Prostatic Neoplasms, Castration-Resistant , Drug Therapy , Metabolism , Pathology , Signal Transduction , Transcription Factor RelA , Metabolism
11.
Yonsei Medical Journal ; : 1096-1106, 2018.
Article in English | WPRIM | ID: wpr-718030

ABSTRACT

PURPOSE: Alzheimer's disease (AD) is the sixth most common cause of death in the United States. MicroRNAs have been identified as vital players in neurodegenerative diseases, including AD. microRNA-128 (miR-128) has been shown to be dysregulated in AD. This study aimed to explore the roles and molecular mechanisms of miR-128 in AD progression. MATERIALS AND METHODS: Expression patterns of miR-128 and peroxisome proliferator-activated receptor gamma (PPAR-γ) messenger RNA in clinical samples and cells were measured using RT-qPCR assay. PPAR-γ protein levels were determined by Western blot assay. Cell viability was determined by MTT assay. Cell apoptotic rate was detected by flow cytometry via double-staining of Annexin V-FITC/PI. Caspase 3 and NF-κB activity was determined by a Caspase 3 Activity Assay Kit or NF-κB p65 Transcription Factor Assay Kit, respectively. Bioinformatics prediction and luciferase reporter assay were used to investigate interactions between miR-128 and PPAR-γ 3′UTR. RESULTS: MiR-128 expression was upregulated and PPAR-γ expression was downregulated in plasma from AD patients and amyloid-β (Aβ)-treated primary mouse cortical neurons (MCN) and Neuro2a (N2a) cells. Inhibition of miR-128 decreased Aβ-mediated cytotoxicity through inactivation of NF-κB in MCN and N2a cells. Moreover, PPAR-γ was a target of miR-128. PPAR-γ upregulation attenuated Aβ-mediated cytotoxicity by inactivating NF-κB in MCN and N2a cells. Furthermore, PPAR-γ downregulation was able to abolish the effect of anti-miR-128 on cytotoxicity and NF-κB activity in MCN and N2a cells. CONCLUSION: MiR-128 inhibitor decreased Aβ-mediated cytotoxicity by upregulating PPAR-γ via inactivation of NF-κB in MCN and N2a cells, providing a new potential target in AD treatment.


Subject(s)
Animals , Humans , Mice , Alzheimer Disease , Blotting, Western , Caspase 3 , Cause of Death , Cell Survival , Computational Biology , Down-Regulation , Flow Cytometry , Luciferases , MicroRNAs , Neurodegenerative Diseases , Neurons , Plasma , PPAR gamma , RNA, Messenger , Transcription Factor RelA , United States , Up-Regulation
12.
Protein & Cell ; (12): 945-965, 2018.
Article in English | WPRIM | ID: wpr-757939

ABSTRACT

Vascular cell functionality is critical to blood vessel homeostasis. Constitutive NF-κB activation in vascular cells results in chronic vascular inflammation, leading to various cardiovascular diseases. However, how NF-κB regulates human blood vessel homeostasis remains largely elusive. Here, using CRISPR/Cas9-mediated gene editing, we generated RelA knockout human embryonic stem cells (hESCs) and differentiated them into various vascular cell derivatives to study how NF-κB modulates human vascular cells under basal and inflammatory conditions. Multi-dimensional phenotypic assessments and transcriptomic analyses revealed that RelA deficiency affected vascular cells via modulating inflammation, survival, vasculogenesis, cell differentiation and extracellular matrix organization in a cell type-specific manner under basal condition, and that RelA protected vascular cells against apoptosis and modulated vascular inflammatory response upon tumor necrosis factor α (TNFα) stimulation. Lastly, further evaluation of gene expression patterns in IκBα knockout vascular cells demonstrated that IκBα acted largely independent of RelA signaling. Taken together, our data reveal a protective role of NF-κB/RelA in modulating human blood vessel homeostasis and map the human vascular transcriptomic landscapes for the discovery of novel therapeutic targets.


Subject(s)
Humans , Blood Vessels , Cell Biology , Metabolism , CRISPR-Cas Systems , Embryonic Stem Cells , Cell Biology , Gene Knockout Techniques , Homeostasis , NF-kappa B , Metabolism , Transcription Factor RelA , Metabolism
13.
Chinese journal of integrative medicine ; (12): 279-287, 2017.
Article in English | WPRIM | ID: wpr-287106

ABSTRACT

<p><b>OBJECTIVE</b>To investigate the effects of Huaiqihuang Granules (, HQH), a mixture of Chinese herbs including Trametes robiniophila Murr, Fructus Lycii and Polygonatum sibiricum, on adriamycininduced nephropathy (ADRN) in rats and its underlying mechanisms.</p><p><b>METHODS</b>Rats with ADRN were divided into four groups: the sham group, the model group (distilled water), the low-dose HQH-treated (2 g/kg) group, and the high-dose HQH-treated (4 g/kg) group. Body weight and 24-h urinary protein (Upro) were checked every week. After 5-week intervention, at the end of the study, the rats were sacrificed and blood samples were collected for examination of biochemical parameters, including glomerular morphological makers, podocyte shape, cellular apoptosis, expressions of nephrin, inflammatory and apoptosis markers.</p><p><b>RESULTS</b>HQH ameliorated the rat's general status, proteinuria, renal morphological appearance and glomerulosclerosis. The decreased expression of nephrin in ADRN rats was increased by HQH, as well as the impaired podocyte foot process fusion. Cytosolic levels of p65 and inhibitor of nuclear factor κBα (IκBα) were decreased in ADRN rats, and recovered by the treatment of HQH. Consistently, the induced expression of tumor necrosis factor α (TNF-α), phosphorylated nuclear factor κB p65 (p-NFκB p65) and IκBα in ADRN were markedly suppressed by HQH. In addition, induction of Bax, cleaved caspase-3 and cytochrome C in ADRN rats were suppressed by HQH, indicating the amelioration of apoptosis.</p><p><b>CONCLUSION</b>HQH could ameliorate renal impairments in ADRN rats by increasing nephrin expression, inhibiting NF-κB signaling pathway via the down-regulation of p-NF-κB p65 and p-IκBα, and suppression of glomerular and tubular apoptosis.</p>


Subject(s)
Animals , Male , Apoptosis , Body Weight , Caspase 3 , Metabolism , Chromatography, High Pressure Liquid , Cytochromes c , Metabolism , Doxorubicin , Drugs, Chinese Herbal , Pharmacology , Therapeutic Uses , Kidney , Pathology , Kidney Diseases , Blood , Drug Therapy , Kidney Glomerulus , Pathology , Kidney Tubules , Pathology , Membrane Proteins , Metabolism , NF-KappaB Inhibitor alpha , Metabolism , NF-kappa B , Metabolism , Organ Size , Proteinuria , Blood , Drug Therapy , Rats, Sprague-Dawley , Signal Transduction , Transcription Factor RelA , Metabolism , Tumor Necrosis Factor-alpha , Metabolism , bcl-2-Associated X Protein , Metabolism
14.
Acta Physiologica Sinica ; (6): 41-46, 2017.
Article in Chinese | WPRIM | ID: wpr-331595

ABSTRACT

To investigate the effect of salidroside (Sal) on the inflammatory activation of lipopolysaccharide (LPS)-induced murine macrophage cell line J774.1 and its possible mechanism, the cells were treated with PBS, LPS (0.5 µg/mL) or different doses of Sal (5, 25, 125 µg/mL) + LPS (0.5 µg/mL). CCK-8 colorimetric method was used to detect the cell activity. The enzyme-linked immunosorbent assay (ELISA) was used to detect the contents of TNF-α, MCP-1 and MIP-2 in the supernatant, and the content of NO in the supernatant was determined by nitrate reductase method. The expression levels of iNOS mRNA was detected by RT-PCR. Western blot was used to detect the expression levels of iNOS protein in cytoplasm and NF-kappaB/p65 (NF-κB/p65) protein in both cytoplasm and nucleus, and DNA binding activity of NF-κB/p65 was detected by using TransAMTM NF-κB/p65 activity assay kit. The results showed that the treatment with 0.5 µg/mL LPS and different doses of Sal (5, 25, 125 µg/mL) for 12 h had no effect on cell viability. Compared with LPS stimulation group, pretreatment with Sal significantly reduced the contents of TNF-α, MCP-1, MIP-2 and NO in culture supernatant induced by LPS in a dose dependent manner (P < 0.05), downregulated the expression levels of iNOS mRNA and protein (P < 0.05), decreased the expression level of NF-κB/p65 protein in nucleus (P < 0.05) while accordingly increased that in cytoplasm (P < 0.05), and decreased DNA binding activity of NF-κB/p65 in a dose dependent manner (P < 0.05). The results suggested that Sal pretreatment can reduce macrophage inflammatory activation induced by LPS, and the mechanism may be through the LPS/TLR4/NF-κB signaling pathway, thereby reducing the excessive expression and secretion of inflammatory mediators and cytokines.


Subject(s)
Animals , Mice , Cell Line , Chemokine CCL2 , Metabolism , Chemokine CXCL2 , Metabolism , Enzyme-Linked Immunosorbent Assay , Glucosides , Pharmacology , Inflammation , Lipopolysaccharides , Macrophages , Metabolism , Nitric Oxide , Metabolism , Nitric Oxide Synthase Type II , Metabolism , Phenols , Pharmacology , Signal Transduction , Transcription Factor RelA , Metabolism , Tumor Necrosis Factor-alpha , Metabolism
15.
São Paulo; s.n; s.n; 2017. 106 p. tab, ilus, graf.
Thesis in Portuguese | LILACS | ID: biblio-883613

ABSTRACT

Seja no meio ambiente, dentro de um hospedeiro ou em outro habitat, bactérias estarão frequentemente enfrentando condições adversas, como exposição a compostos antibacterianos ou carência nutricional. Em situações como essas, as bactérias são capazes de ativar a chamada resposta estringente, modulada pelo alarmônio (p)ppGpp. O acúmulo de (p)ppGpp promove a inibição da transcrição de rRNAs e tRNAs e a supressão do processo de tradução, e a ativação de operons de biossíntese de aminoácidos. Sabe-se também hoje que a resposta estringente está relacionada a outras importantes carências nutricionais em Escherichia coli, como a falta de ácidos graxos, porém não se sabe se o mesmo ocorre em Bacillus subtilis ou em outras Grampositivas. (p)ppGpp atua também direta e indiretamente em vários outros processos celulares, como motilidade, resistência a antibióticos, virulência e persistência, indicando que (p)ppGpp é um regulador central que integra informação metabólica e respostas adaptativas. O presente trabalho buscou estudar a correlação da resposta estringente de B. subtilis com a carência de ácidos graxos e a busca por pequenas moléculas capazes de modular RelA (a principal proteína envolvida na síntese de (p)ppGpp) e impedir o acúmulo de (p)ppGpp. Para a indução da carência de ácidos graxos, foram utilizadas duas estratégias; uso da droga Cerulenina (inibidor de FabF) e mutantes condicionais no gene FabF. Observou-se que mutantes incapazes de ativar a resposta estringente (cepa ppGpp(0) ou RelAD264G) apresentaram grande perda de viabilidade celular durante a carência de ácidos graxos, ao passo que a cepa selvagem manteve sua viabilidade celular. A causa da morte se deu majoritariamente devido ao colapso do potencial de membrana. Apesar de não termos observado aumento de (p)ppGpp nas células selvagens durante a carência de ácidos graxos, observou-se uma redução da razão GTP/ATP, ao passo que na cepa ppGpp(0), a razão GTP/ATP aumentou, devido ao acúmulo de GTP. O uso da droga decoinina, capaz de reduzir os níveis intracelulares de GTP, resgatou parcialmente a viabilidade da cepa e impediu a perda do potencial de membrana, indicando que os níveis de GTP são importantes durante a carência de ácidos graxos em B. subtilis. Para a triagem de pequenas moléculas inibidoras do acúmulo de (p)ppGpp, foi utilizada uma biblioteca de 2320 diferentes compostos químicos, e buscou-se drogas capazes de reverter o fenótipo de crescimento lento de cepas de B. subtilis que acumulam (p)ppGpp (via mutação pontual; mutante RelAH77A e via tratamento com o indutor hidroxamato de arginina) em meio rico. A primeira etapa selecionou 40 moléculas capazes de resgatar o crescimento de células tratadas com arginina-hidroxamato, porém apenas uma, salicilanilida, foi capaz de também resgatar o crescimento da cepa RelAH77A. Todavia, apesar de ser capaz de acelerar o crescimento de B. subtilis esse efeito é limitado. Diversos análogos de salicilanilida foram testados, porém não apresentaram efeito superior a salicilanilida para a reversão do fenótipo de crescimento lento de B. subtilis. Em adição, a droga não foi capaz de aumentar a sensibilidade dos organismos a diversos antibióticos testados, e aparentemente é incapaz de alterar os níveis internos de (p)ppGpp, porém é capaz de causar alterações nos níveis de ATP. Logo, acredita-se que o efeito observado para o crescimento das células seja devido a efeitos indiretos, possivelmente envolvendo alteração de outros nucleotídeos fosforilados


In the environment, inside a host or other habitat, bacteria will always face adverse conditions, as for example exposure to antimicrobials or starvation. In situations like those, bacteria activate the stringent response, modulated by the alarmone (p)ppGpp. (p)ppGpp accumulation promotes inhibition of rRNA and tRNA transcription and suppression of translational process, at the same time that it activates several amino acid biosynthesis operons. It is known also that the stringent response it is related to other starvation stress in Escherichia coli, like lack of fatty acids, but there is no knowledge if the same occurs for Bacillus subtilis or other gram-positive bacteria. ppGpp acts directly and indirectly affecting several other cellular process, as motility, resistance to antibiotics, virulence and persistence, indicating that (p)ppGpp is a central regulator that integrates metabolic information and adaptive responses. This work aimed to study the correlation between the stringent response in B. subtilis with fatty acid starvation, and search for small moleculas capable of modulating RelA (the main enzyme responsible for ppGpp synthesis) and stop (p)ppGpp production. For fatty acid starvation induction, two strategies were used; use of the drug Cerulenin (inhibitor of the FabF protein) and conditional mutants of the FabF gene. We observed that mutants incapable of activating the stringent response (strains ppGpp(0) ou RelAD264G) presented great loss of viability during fatty acid starvation, whereas the wild-type strain keeps its viability. The main cause of death is due membrane rupture in some cells, but mainly due to membrane potential collapse. Although we did not observed increase of (p)ppGpp in wild-type strains during fatty acid starvation, we observed reduction in GTP/ATP ratios, a hallmark of (p)ppGpp production in gram-positive bacteria. In the strain ppGpp(0) GTP/ATP ratio increased, mainly due to GTP increase. Using the drug decoyinine, capable of reducing GTP levels, partially recued viability and protects cells of losing its membrane potential, indicating that GTP levels plays an important role during fatty acid starvation in B. subtilis. For the screening of small molecules capable of inhibit (p)ppGpp production, a library of 2320 different chemical compounds were used, and we looked for drugs capable of reverting the slow growth phenotype of B. subtilis strains with (p)ppGpp accumulation (using a mutant RelAH77A; and using a stringent response inductor, arginine hidroxamate). The first step selected for 40 molecules capable of rescuing the growth of cells treated with arginine hidroxamate, but only one drug, salicilanilyde could also rescue the growth of the strain RelAH77A. Although capable of rescuing growth of B. subtilis that accumulates (p)ppGpp, this rescue is limited. Several analogues of salicilanilyde were tested, but none were stronger than salicilanilyde itself in rescuing growth of slow growing strains of B. subtilis. In addition, the drug was not capable of increasing antibiotic sensibility and it is incapable of changing intracellular (p)ppGpp levels, but it does shifts ATP levels. Therefore, we believe that the observed effects of salicilanilyde is due indirect action, probably involving other phosphorylated nucleotides, rather than modifying (p)ppGpp levels


Subject(s)
Bacillus subtilis/metabolism , Transcription Factor RelA , Salicylanilides/administration & dosage , Microbial Sensitivity Tests/methods , Cerulenin/administration & dosage , Triage , Chromatography, High Pressure Liquid , Fatty Acids/analysis , Microscopy, Fluorescence/instrumentation
16.
Journal of Pathology and Translational Medicine ; : 588-593, 2017.
Article in English | WPRIM | ID: wpr-196759

ABSTRACT

Ependymoma is the third most common pediatric primary brain tumor. Ependymomas are categorized according to their locations and genetic abnormalities, and these two parameters are important prognostic factors for patient outcome. For supratentorial (ST) ependymomas, RELA fusion-positive ependymomas show a more aggressive behavior than YAP1 fusion-positive ependymomas. Extracranial metastases of intra-axial neuroepithelial tumors are extremely rare. In this paper, we report a case of aggressive anaplastic ependymoma arising in the right frontoparietal lobe, which had genetically 1q25 gain, CDKN2A homozygous deletion, and L1CAM overexpression. The patient was a 10-year-old boy who underwent four times of tumor removal and seven times of gamma knife surgery. Metastatic loci were scalp and temporalis muscle overlying primary operation site, lung, liver, buttock, bone, and mediastinal lymph nodes. He had the malignancy for 10 years and died. This tumor is a representative case of RELA fusion-positive ST ependymoma, showing aggressive behavior.


Subject(s)
Child , Humans , Male , Brain Neoplasms , Buttocks , Ependymoma , Genetics , Liver , Lung , Lymph Nodes , Neoplasm Metastasis , Neoplasms, Neuroepithelial , Neural Cell Adhesion Molecule L1 , Scalp , Supratentorial Neoplasms , Transcription Factor RelA
17.
J. bras. nefrol ; 38(2): 153-160, graf
Article in Portuguese | LILACS | ID: lil-787878

ABSTRACT

RESUMO Introdução: p-cresol (PC) e p-cresil sulfato (PCS) são responsáveis por muitas das consequências clínicas uremia, tais como a aterosclerose em pacientes com Doença Renal Crônica (DRC). Objetivos: No presente trabalho, investigamos in vitro o impacto de PC e PCS na expressão da quimiocina monocyte chemoattractant protein-1 (MCP-1) via NF-kappa B (NF-κB) p65 em VSMC. Métodos: O PCS foi sintetizado por sulfatação do PC. As VSMC foram extraídas por digestão enzimática da veia do cordão umbilical e caracterizadas por imunofluorescência através do anticorpo α-actina. As células foram tratadas com PC e PCS em suas concentrações normal (n), urêmica (u) e urêmica máxima (m). A viabilidade celular foi avaliada pelo ensaio de MTT. A expressão de MCP-1 foi investigada por ELISA em sobrenadantes de células após o tratamento com as toxinas, com ou sem o inibidor de NF-κB p65. Resultados: Não houve diferença significativa na viabilidade das células após o tratamento com toxinas para todas as concentrações testadas. Houve um aumento significativo na expressão de MCP-1 em células tratadas com PCu e PCm (p < 0,001) e PCSn, PCSu e PCSm (p < 0,001), em comparação com o controle. Quando as VSMC foram tratadas com o inibidor de NF-κB p65 mais PCu e PCm, houve uma diminuição significativa na produção de MCP-1 (p < 0,005). Este efeito não foi observado com PCS. Conclusões: VSMC estão envolvidas na formação da lesão aterosclerótica e produção de MCP-1, o que contribui para o início da resposta inflamatória. Os nossos resultados sugerem que a PC medeia a produção de MCP-1 em VSMC, provavelmente através da via NF-κB p65 e que PCS atue através de uma subunidade diferente da via, uma vez que o inibidor da porção p65 não foi capaz de inibir a produção de MCP-1.


ABSTRACT Introduction: p-cresol (PC) and p-cresyl sulfate (PCS) are responsible for many of the uremia clinical consequences, such as atherosclerosis in Chronic Kidney Disease (CKD) patients. Objectives: We investigate the in vitro impact of PC and PCS on monocyte chemoattractant protein-1 (MCP-1) expression via NF-kappa B (NF-κB) p65 in VSMC. Methods: PCS was synthesized by PC sulfatation. VSMC were extracted by enzymatic digestion of umbilical cord vein and characterized by immunofluorescence against α-actin antibody. The cells were treated with PC and PCS at their normal (n), uremic (u) and maximum uremic concentrations (m). Cell viability was assessed by MTT. MCP-1 expression was investigated by ELISA in cells supernatants after toxins treatment with or without the NF-κB p65 inhibitor. Results: There was no significant difference in cell viability after toxins treatment for all concentrations tested. There was a significant increase in MCP-1 expression in cells treated with PCu and PCm (p < 0.001) and PCSn, PCSu and PCSm (p < 0.001), compared with the control. When VSMC were treated with the NF-κB p65 inhibitor plus PCu and PCm, there was a significant decrease in MCP-1 production (p < 0.005). This effect was not observed with PCS. Conclusions: VSMC are involved in atherosclerosis lesion formation and production of MCP-1, which contributes to the inflammatory response initiation. Our results suggest that PC mediates MCP-1 production in VSMC, probably through NF-κB p65 pathway, although we hypothesize that PCS acts through a different subunit pathway since NF-κB p65 inhibitor was not able to inhibit MCP-1 production.


Subject(s)
Humans , Sulfuric Acid Esters/pharmacology , Chemokine CCL2/biosynthesis , Chemokine CCL2/drug effects , Cresols/pharmacology , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/metabolism , Cells, Cultured , Transcription Factor RelA/physiology
18.
Chinese journal of integrative medicine ; (12): 910-917, 2016.
Article in English | WPRIM | ID: wpr-229541

ABSTRACT

<p><b>OBJECTIVE</b>To explore the mechanism of the protective effects of Panax notoginseng saponins (PNS) on kidney in diabetic rats.</p><p><b>METHODS</b>Diabetic rat model was obtained by intravenous injection of alloxan, and the rats were divided into model, PNS-100 mg/(kg day) and PNS-200 mg/(kg day) groups, 10 each. Another 10 rats injected with saline were served as control. Periodic acid-Schiff staining and immunological histological chemistry were used to observe histomorphology and tissue expression of bone morphogenetic protein-7 (BMP-7). Silent information regulator 1 (SIRT1) was silenced in rat mesangial cells by RNA interference. The mRNA expressions of SIRT-1, monocyte chemoattractant protein-1 (MCP-1), transforming growth factor β1 (TGF-β1) and plasminogen activator inhibitor-1 (PAI-1) were analyzed by reverse transcription polymerase chain reaction. The protein expressions of SIRT1 and the acetylation of nuclear factor κB (NF-κB) P65 were determined by western blotting. The concentration of MCP-1, TGF-β1 and malondialdehyde (MDA) in culture supernatant were detected by enzyme-linked immuno sorbent assay. The activity of superoxide dismutase (SOD) was detected by the classical method of nitrogen and blue four.</p><p><b>RESULTS</b>In diabetic model rats, PNS could not only reduce blood glucose and lipid (P<0.01), but also increase protein level of BMP-7 and inhibit PAI-1 expression for suppressing fibrosis of the kidney. In rat mesangial cells, PNS could up-regulate the expression of SIRT1 (P<0.01) and in turn suppress the transcription of TGF-β1 (P<0.05) and MCP-1 (P<0.05). PNS could also reverse the increased acetylation of NF-κB p65 by high glucose. In addition, redox regulation factor MDA was down-regulated (P<0.05) and SOD was up-regulated (P<0.01), which were both induced by SIRT1 up-regulation.</p><p><b>CONCLUSIONS</b>PNS could protect kidney from diabetes with the possible mechanism of up-regulating SIRT1, therefore inhibiting inflammation through decreasing the induction of inflammatory cytokines and TGF-β1, as well as activating antioxidant proteins.</p>


Subject(s)
Animals , Male , Acetylation , Antioxidants , Metabolism , Blood Glucose , Metabolism , Bone Morphogenetic Protein 7 , Metabolism , Chemokine CCL2 , Metabolism , Diabetes Mellitus, Experimental , Blood , Drug Therapy , Genetics , Gene Knockdown Techniques , Immunohistochemistry , Kidney , Pathology , Kidney Function Tests , Lipids , Blood , Malondialdehyde , Metabolism , Mesangial Cells , Metabolism , Oxidative Stress , Panax notoginseng , Chemistry , Plasminogen Activator Inhibitor 1 , Genetics , Metabolism , Protective Agents , Pharmacology , Therapeutic Uses , Rats, Sprague-Dawley , Saponins , Pharmacology , Therapeutic Uses , Sirtuin 1 , Genetics , Superoxide Dismutase , Metabolism , Transcription Factor RelA , Metabolism , Transcription, Genetic , Transforming Growth Factor beta1 , Metabolism , Up-Regulation
19.
Chinese Journal of Integrated Traditional and Western Medicine ; (12): 222-228, 2016.
Article in Chinese | WPRIM | ID: wpr-328323

ABSTRACT

<p><b>OBJECTIVE</b>To observe mainfestations of syndrome and biochemical indices of hypertensive model rats with excessive accumulation of phlegm-dampness syndrome (EAPDS), and to explore its possible pathological mechanism.</p><p><b>METHODS</b>EAPDS rat model was prepared in 50 Wistar rats by feeding with high fat forage. Meanwhile, a normal control group consisting of 10 Wistar rats was set up by feeding with normal forage. After 25-week continuous feeding, 22 rats with body weight (BW) and blood pressure (BP) exceeding 25% those of the control group were selected as a model group. BW, BP, blood lipids, and related serological indicators were detected in all rats. Morphological changes of target organs were observed. mRNA expression levels of leptin receptor (LepR), Janus kinase2 (Jak2), signal transducer and activator of transcription 3 (Stat3), suppressor of cytokine signaling-3 (Socs3), angiotensin II receptor type 1 (AT1), angiotensin II receptor type 2 (AT2), phosphatidylinositol 3 kinase (P13K), serine threonine kinase (Akt), nuclear factor of kappa B (NF-κBp65), inhibitor of nuclear factor kappa-B kinase α (IKKα), NF-kappa-B inhibitor β (lKKβ), NF-kappa-B inhibitor α (IKBα), and AMP-activated protein kinase (AMPK) were detected by quantitative real-time PCR (qPCR). Expression levels of AT1 and LepR in aorta were detected by immunohistochemical assay and Western blot respectively.</p><p><b>RESULTS</b>Compared with the control group, BW, BP, and blood lipids increased; serum levels of leptin (Lep) , Ang II, Hcy, ET-1, TNF-α, IL-6, and p2-MG increased, but NO decreased in the model group (P < 0.05, P < 0.01). Aortal endothelial injury and smooth muscle cell proliferation occurred in the model group, accompanied with heart and renal injury. Compared with the control group, mRNA expression levels of LepR, Jak2, Stat3, Socs3, AT1 , PI3K, Akt, NF-κB p65, IKKβ, IKBα, and AMPK in aorta were up-regulated significantly (P < 0.05), while the expression of IKKa decreased (P < 0.05). Immunohistochem- ical staining showed, brownish yellow deposit of AT1 and LepR was obviously increased, with more extensively positive distribution. Western blot results showed, as compared with the control group, protein expression levels of AT1 and LepR obviously increased in the model group (P < 0.05).</p><p><b>CONCLUSIONS</b>Model rats exhibited typical syndromes of EAPDS. They put up weight with fat abdomen, gloomy hair, poor appetite, hypersomnia, lowered activities , reduced food intake, loose stool, dark red tongue, white tongue with white, thick, greasy fur. Lep could be taken as one of objective indicators for evaluating hypertension rat model with EAPDS.</p>


Subject(s)
Animals , Rats , Aorta , Cell Proliferation , Disease Models, Animal , Hypertension , I-kappa B Proteins , Interleukin-6 , Leptin , Blood , NF-KappaB Inhibitor alpha , NF-kappa B , Phosphatidylinositol 3-Kinases , Rats, Wistar , Suppressor of Cytokine Signaling Proteins , Transcription Factor RelA , Tumor Necrosis Factor-alpha
20.
Chinese journal of integrative medicine ; (12): 832-839, 2016.
Article in English | WPRIM | ID: wpr-301020

ABSTRACT

<p><b>OBJECTIVE</b>To determine the effect of medicated serum of Chinese herbal compound Naofucong (, NFC) on the microglia BV-2 cells viability and the transcription and expression of interleukin-6 (IL-6) and tumor necrosis factor α (TNF-α) in microglia BV-2 cells to further explore the mechanisms underlying the protective effect of NFC on inflammatory process induced by high glucose.</p><p><b>METHODS</b>The microglia BV-2 cells incubated in vitro were divided into different groups: the control group (25 mmol/L glucose), the model group (75 mmol/L glucose), high glucose media containing different dose medicated serum of NFC. After being cultured for 24 h, changes in IL-6 and TNF-α were measured by quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay. The expression of surface marker CD11b of activated microglia was measured by confocal laser scanning microscope and Western blot. Nuclear factor-κB (NF-κB) p-p65 expression was analyzed by Western blot.</p><p><b>RESULTS</b>The model group obviously increased the expression of microglial surface marker CD11b and NF-κB p-p65 (all P<0.01), induced a signifificant up-regulation of release and the mRNA expression of IL-6 and TNF-α (P<0.01 or P<0.05). The medicated serum of NFC could obviously down-regulate the transcription and expression of surface marker CD11 b and NF-κB p-p65 (all P<0.01), and inhibit the mRNA and protein expression (P<0.01 or P<0.05) of inflflammatory cytokines, such as IL-6 and TNF-α, in microglia BV-2 cells cultured with high glucose for 24 h.</p><p><b>CONCLUSIONS</b>The inhibition of microglial activation and IL-6 and TNF-α expression induced by high glucose may at least partly explain NFC therapeutic effects on diabetes-associated cognitive decline diseases. Its underlying mechanism could probably be related to the inhibition of NFC on NF-κB phosphorylation.</p>


Subject(s)
Animals , Male , Mice , Biomarkers , Metabolism , Blotting, Western , CD11b Antigen , Genetics , Metabolism , Cell Line , Cell Shape , Cell Survival , Drugs, Chinese Herbal , Pharmacology , Therapeutic Uses , Enzyme-Linked Immunosorbent Assay , Fluorescent Antibody Technique , Glucose , Toxicity , Inflammation , Drug Therapy , Pathology , Interleukin-6 , Genetics , Metabolism , Microscopy, Confocal , RNA, Messenger , Genetics , Metabolism , Rats, Wistar , Real-Time Polymerase Chain Reaction , Transcription Factor RelA , Metabolism , Tumor Necrosis Factor-alpha , Genetics , Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL